ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013. M.Sc. (ECOLOGY AND ENVIRONMENTAL SCIENCES) COURSE CODE: 371

Register Number :	•
	Signature of the Invigilator (with date)

COURSE CODE: 371

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Whie	ch country has no native terrestrial m	amma.	is?
	(A)	Greenland	(B)	New Zealand
	(C)	Mongolia	(D)	China
2.	Phei	notypical ratio of F2 hybrid plants in d	lihybri	d cross of Mendel
	(A)	9:3:3:1	(B)	9:3:1:3
	(C)	3:3:3:1.	(D)	3:1
3.	Defo	orestation reduces and incr	eases _	
	(A)	CO2 uptake in photosynthesis, and	global s	warming
	(B)	O2 uptake in respiration and guttation	on	
	(C)	N uptake and photosynthesis		
	(D)	P uptake and transpiration		
4.	Hyd	rochory refers to		
	(A)	pollination by water	(B)	seed dispersal by water
	(C)	absorption of water	(D)	elimination of water
5.	The	ory of inheritance of acquired characte	rs was	put forward by
	(A)	Lamarck	(B)	Darwin
	(C)	Mendel	(D)	Bateson
6.	Plan	nt growth substances include		
	(A)	Adenine, Guanine, Cytosine	(B)	Sporopollenin, Chlorophyll
	(C)	Auxin, Gibberellin, Cytokinin	(D)	Nitrogen, Phosphorus, Potassium
7.	Cau	ses of coastal pollution include		
	(A)	oil-spills, effluents, solid dumps, etc.		. *
	(B)	oil-extraction, aquaculture, agricultu	ıre, etc	.
	(C)	over- exploitation of fishery resource	8	
	(D)	under-utility of fishery resources	,	
8.	Wha	at are the respiratory organs in insects	3	
	(A)	gills	(B)	trachea
	(C)	lungs	സ	skin

9.	The	standard deviation is:		
	(A)	A parameter of distribution	(B)	A measure of dispersion
	(C)	A measure of central tendency	(D)	Skewness
10.	Ane	mophily and Chiropterophily respectiv	ely rei	fer to
	(A)	pollination by animals and water		
	(B)	seed dispersal by bats and baboons		•
	(C)	pollination by winds and bats		
	(D)	seed dispersal by wind amd insects		
11.	_	anisms reproducing once in life time	e are	respectively referred in plants and
	(A)	monocarpic and semelparous	(B)	polycarpic and iteroparous
	(C)	monophyletic and polyphyletic	(D)	viviparous and semelparous
12.	Exce	ess of water escaping from the plants in	n a liq	uid form is called
	(A)	transpiration	(B)	osmosis
	(C)	guttation	(D)	respiration
13.	Fina	al product of anaerobic respiration is		
	(A)	methanol	(B)	pyruvate
	(C)	ethanol	(D)	starch
14.	Acc	ording to the laws of thermodynamics wh	nich of	the following can be recycled
	(A)	Both matter and energy	(B)	Matter, but not energy
	(C)	Neither matter nor energy.	(D)	Energy, but not matter
15.	Tick	the set of invasive weeds		
	(A)	Pine, fir, linden	(B)	Teak, sal, red sanders
	(C)	Lantana, Eichhornia, Chromolaena	(D)	Gnetum, Connarus, Derris
16.	Wha	at is meant by demography?		
	(A)	The age distribution of populations	•	
	(B)	Growth curves of populations		
	(C) .	Factors that affect birth and death of	f popu	lations
	(D)	The distribution and abundance of a	aimala	·

17.	Tick	the order indicating increasing rainfal	11,	
	(A)	cold deserts, hot deserts, grasslands		•
	(B)	rainforests, savannas and deciduous	forest	В
	(C)	grasslands, rainforests and deserts		
	(D)	deserts, savannas, deciduous and eve	rgree	n forests
18.	Phys	sical and chemical defense against herl	oivory	are
	(A)	Thorns and Total phenols	(B)	Epidermis and Lipids
·	(C)	Vasculature and Glycerol	(D)	Nectaries and Proteins
19.	Rep	resentatives of four major Arthopod cla	sses i	nclude
	(A)	canids, felids and bovids		
	(B)	annelids, centipedes and polychaetes		
	(C)	millepedes, crabs, lepidopterans and	arach	nids
	(D)	nematodes, earthworms and corals		V
20.	Whi	ch one of the following is produced from	n min	eral oil?
	(A)	Castor oil	(B)	Kerosine
	(C)	Jetropa oil	(D)	Ranseed oil
21.	Kyo	to Convention is concerned with		
	(A)	oil pollution	(B)	deforestation
	(C)	terrorism	(D)	climate change
22.	Sust	tainable use of resources would refer to	•	
	(A)	optimal resource harvest within reger	nerati	ve potential of species
	(B)	maximal resource harvest in all seaso	ns	
	(C)	resource harvest at long time interva	ls o re	source harvest at all
	(D)	no resource harvest at all	• .	
23.	Imp	ortant shelter belt species for coastal p	rotect	ion include
	(A)	Spinifex, Casuarina	(B)	Teak, Ixora
	(C)	Cinnomon, Verbena	(D)	Salix, Fagus
24.	End	emics are		
	(A)	species with wide distribution	(B)	species with restricted distribution
•	(C)	biomes of wide range	(D)	biomes of narrow range

	(A)	relatively long summers and drier	winters.		
	(B)	rise in the sea level and regional c	limatic c	hanges.	
	(C)	increased water levels in water consistent flooding patterns.	r bodies	like lakes and streams but	more
	(D)	increased water levels in lake floodplains.	es and	streams and comparatively l	arger
26.	Met	hods of fossilization include			
	(A)	Sublimation, impression, predatio	n and die	persion	
	(B)	Sedimentation, impression, compr	ession ar	nd petrifaction	
	(C)	Nitrification, cryopreservation, con	mpressio	n and pollination	
	(D)	Denitrification, crystallization, fos	silization	and preservation	
27.	Leat	ther industries utilize			
	(A)	seed lectins and potassium perma	nganate		
•	(B)	bark and fruit tannins or chromiu		ite	
	(C)	stem latex and sodium citrate	•		
	(D)	root oils and lead nitrate			
28.	The	function of water in photosynthesis	is		
	(A)	combine with CO2			
	(B)	absorb light energy		•	
	(C)	supply of electrons in the light-dep	pendent 1	reactions	
	(D)	transport H+ ions in the light-inde	ependent	(dark) reactions	
29.	Whe	en body temperature of organisms co	orrespond	is to environment, they are calle	ed
•	(A)	Poikilothermic	(B)	Endothermic	
	(C)	Homeothermic	(D)	endoexothermic	
30.	The	type I error is to:			. 1
	(A)	Reject the test when it is wrong	(B)	When $H_0 > H$	
	(C)	Accept Ho when it is wrong	(D)	Reject Ho when it is true	
31.	Whi	ch of the following is not a compone	nt of all	the ecosystems	
	(A)	producers	(B)	decomposers	
	(C)	herbivores	(D)	tertiary consumers	
		5	j		371

As a result of rising global temperatures following two major impacts are expected

25.

32.	Ech:	inoderms include	е		•			
	(A)	finfish, bivalve	s and	gastropods		·		
	(B)	shelfish, gastro	pods	and oysters				
	(C)	star fish, sea u	rchins	and sea cuci	ımbers			
	(D)	clams, prawns	and s	hrimps	- .			
33.	Plar	nt and fungal cel	l wall	are respectiv	ely made	of		
	(A)	chitin and crea	tinin		(B)	maltose and la	actose ·	÷
	(C)	cellulose and c	hitin		(D)	glucose and ga	alactose	
34.	Tick	the related man	nmal ;	group				
	(A)	manatees , elk	s and	cheetah	(B)	musk deer, ot	ters and lio	n
	(C)	capibara, elano	ds and	bats	(D)	mammoths, el	lephants an	d tapirs
35.	Gro	wing two or more	crops	simultaneous	ly with no	distinct row arra	angement is	known a
	(A)	mixed cropping	g	•	(B)	mixed intercre	opping	-
	(C)	relay cropping			(D)	alley cropping		
36.	Suc	cession initiating	g from	aquatic envi	ronment i	8		
	(A)	hydrosere			(B)	xerosere		
	(C)	mesosere	•		(D)	none of the ab	ove	
37.	The	deepest zone of	the oc	ean is called	·			
	(A)	epipelagic			(B)	mesopelagic		,
	(C)	benthopelagic			(D)	bathypelagic		-
38.	Whi	ich of the followi	ng ter	ms is not rela	ited to the	ermal stratifica	tion	
	(A)	thermocline			٠.			
	(B)	epilimnion						
	(C)	hypolimnion						
	(D)	eutrophication	•	• .				
39.	Indi	ividuals of the sa	ıme sp	ecies in a par	rticular lo	cality constitut	e .	
	(A)	population			(B)	community		
	(C)	flora			(D)	fauna		
40.	Smo	og pollution does	not co	ontain				
,	(A)	Ozone	(B)	PAN	(C)	CO	(D) NO	O_2

41.	Den	gue is transmitted by		
	(A)	aedes	(B)	anopheles
	(C)	culex	(D)	none of above
42 .	Whi	ch one of the following is a major con	stituent	t of Biogas?
	(A)	Methane	(B)	Carbohydrates
	(C)	Hydrogen	(D)	Nitrogen dioxide
43.		use of living organisms to degrade		vironmental pollutants or to prevent vn as
	(A)	phytoremediation	(B)	remediation
	(C)	bioremediation	(D)	none of the above
44.	Exa	mple of poikilotherms is	,	
	(A)	bird	(B)	snake
	(C)	cow	(D)	man
45 .	A su	adden uncontrolled descend of a mass	of eart	h under the force of gravity is called
	(A)	soil erosion	(B)	mining
	(C)	landslide	(D)	earth quake
46.	Indi	a has second largest reserve of	8	after Brazil
	(A)	iron ore	(B)	bauxite
	(C)	coal	(D)	copper
47 .		dissipation of energy during its tran greement with	smissio	n from one trophic level to another is
	(A)	first law of thermodynamics		
	(B)	second law of thermodynamics		
	(C)	third law of thermodynamics		
	(D)	none of the above		
48.		graphical representation of the insystem is termed as	terrelati	ion of producer and consumer in an
	(A)	ecological niche	(B)	ecological pyramid
	(C)	trophic levels	(D)	food web
4 9.	Spec	cies with restricted geographical dist	ribution	over relatively small range is called
	(A)	endangered species	(B)	extinct species
	(0)	'andomia anasiaa	(T))	threatanad anadas

50.			give an empirical value to water quality and is a parameter							
	for t	he organic matt	ter pre	sent in water						
	(A)	BOD	(B)	COD	(C)	DO	(D)	All the above		
51.	The	process of conve	ersion	of electricity (en	ergy) i	from waste is	called	·		
	(A)	pyrolysis			(B)	vermicompo	sting			
	(C)	sanitary landf	511		(D)	plastic recyc	ling			
52.	End	Endangering plant species can be multiplied through								
	(A)	transgenesis			(B)	rDNA techno	ology			
	<u>(</u> C)	cloning		•	(D)	tissue cultur	re			
53.		· -		changes that e		• =	a climax	community on		
	(A)	primary succe	ssion		(B)	speciation				
	(C)	secondary suc	cession	· · · · · · · · · · · · · · · · · · ·	(D)	evolution				
54.		terrestrial eco	system	, the trophic le	vel th	at would conte	ain the l	argest biomass		
	(A)	producers			(B)	primary con	sumers			
	(C)	secondary con	sumer	5	(C)	highest orde	r consun	ners		
55.	The	most serious er	nvironr	nental effect pos	ed by	hazardous wa	stes is			
	(A)	air pollution			(B)	contaminati	on of gro	undwater		
	(C)	increased use	of land	l for landfills	(D)	destruction	of habita	t ·		
56.	Exti	nct bird of Mau	ritius i	island	·					
	(A)	sunbird	(B)	humming bird	(C)	dodder	(D)	dodo		
57.	Mar	ine mammals ii	nclude							
	(A)	sea cucumber,	, corals	and polychetes				•		
	(B)	mammoths, m	ouse, (deer and marsh	crocod	ile		:		
	(C)	manatees, du	gongs a	and whales						
	സ	caulapa, halin	neda aı	nd codium	1					

oo.	пег	maphrodite r	eiers w						
	(A)	male and fe	male par	ts in the differ	ent flow	ers of same pla	int		
	(B)	male and fe	male par	ts in the same	flower				
	(C)	male and fe	male flow	ers in separa	te plants	;			
	(D)	plants with	some fen	nale and some	bisexua	l flowers			
59.	Popt	ulation regul	ation mec	hanisms help	in				
	(A)	density red	uction an	d diversity ma	intenan	ce		•	
	(B)	density incr	ease and	diversity redu	iction				
	(C)	diversity ar	d density	increase equa	ally				
	(D)	diversity an	d density	decrease equ	ally				
60.	Gro	undwater mii	ning in co	astal areas ca	n result	in			
	(A)			ity of groundw				•	
	(B)	decrease in the salinity of groundwater.							
	(C)	increase in the water table.							
	(D)	increase in	the salini	ty of groundw	ater.	•			
61.		which of the f	ollowing	ecosystem an	ecologic	al pyramid of	energy i	low is often an	
	(A)	ocean	(B)	tundra	(C)	rainforest	(D)	desert	
62.	One	of the best se	olutions t	o get rid of no	n-biodeg	radable wastes	s is		
	(A)	burning	(B)	dumping	(C)	burying	(D)	recycling	
63.		• .	-	_		influence evo		ry changes in	
	(A)	Evolutionar	y ecology	•	(B)	Ecological ev	olution		
	(C)	Co-evolution	n . ,		(D)	Macroevoluti	on		
64.		a lake pollu cimum amour			hich on	e of the follo	wing w	ill contain the	
	(A)	Small fish			(B)	Microscopic a	nimals		
	(C)	Phytoplank	ton -	•	(D)	. Water birds			

65.	The	fact that viruses are obligate intrac- for reproduction.	ellular	parasites mean	s that they require
	(A)	culture dish	(B)	host cell	
	(C)	phenol red broth	(D)	secondary viru	18
66.	The	terms grana and ETP are related to			
	(A)	nucleus and microtubules respective	ely		
	(B)	chloroplast and mitochondria respec	ctively		
	(C)	golgibodies and lysosome respective	ely		
	(D)	ribosomes and vacuoles respectively	7		
67.	The	largest mangrove area in India is			
	(A)	Gulf of Mannar (B) Gulf of Comb	ay (C)	Sundarbans	(D) Palk Strait
68.	Ane	mophily and entomophily respectively	y refer 1	to	
	(A)	pollination by animals and water			
	(B)	seed dispersal by bats and baboons			•
	(C)	pollination by wind and insects			
	(D)	seed dispersal by wind and insects			
69.	Mac	rofungal fruit bodies are produced in			•
	(A)	Phycomycets and Deuteromycetes	(B)	Ascomycetes a	and Basidiomycetes
	(C)	Zygomycetes and Trichomycetes	(D)	Deuteromycets	and Oomycetes
70.	Wee	d control is achieved by			
	(A)	cytological, physiological and embry	ologica	l means	
	(B)	mechanical, chemical and biological	means	ı	
	(C)	pathological, karyologocal and cytol	ogical n	neans	
	(D)	chronological, cytological and astrol	ogical n	neans	
71.	End	ozoochory involves fruit processing by	y	•	
	(A)	ingestion, digestion and egestion			
	(B)	injestion, extraction and sedimenta	tion		
	(C)	impression, compression and petrifi	ication		•
	(D)	expression, suppression and consum	nption		
72.	Root	t nodules with N2 fixers occur in			
	(A)	cereals and cinnamons	(B)	casuarinas an	d legumes
	(C)	cassytha and mints	(D)	cassava and s	edges

a

73.	In pe	ost-fertilization stage ovary, ovule & zygote	respectively develop into
	(A)	seed, embryo and fruit	
	(B)	seed, endosperm and perisperm	
	(C)	fruit, seed and embryo	· ·
	(D)	embryo, endosperm and fruit	
74.	Floa	ating and rooted macrophytes of pond ecosy	stems
-	(A)	Utricularia - Oenothera; Wolfia -Eichhorn	nia
	(B)	Enhalus -Blyxa and Lemna - Hydrocharis	
	(C)	Halophila - Halodule and Eichhornia- Pis	tia
	(D)	Lemna - Wolfia and Elodia – Vallisneria	·
7 5.	Two	hottest hot spots of Biodiversity in Indian	subcontinent include
	(A)	Western Ghats-Sri Lanka - Indo Burma	
	(B)	Eastern Ghats - Aravallis	
	(C)	Coromandel coast – Gangetic plains	
	(D)	Sundarbans and Point Calimere	
76.	Orde	lerly arrangement of 4 major algal group re	presentatives include
	(A)	Chara, Cyclotella, Codium, Ulva	
	(B)	Anabaena, Cycas, Pinus, Gnetum	
	(C)	Nostoc, Ulva, Padina, Polysiphonia	
	(D)	Mangifera, Moringa, Ficus and Fucus	
77.	Mon	noculture means	
	(A)	plantation of single species (B	mixed crop plantation
	(C)	plantation of Eucalyptus and Acacias (D) bacterial culture
78.	Guli	if of Mannar Biosphere Reserve is known fo	r
	(A)	fresh water resources (B	giant squirrels and Slender loris
	(C)	seagrasses, algae and marine fauna (D	crab-eating macaques

79.	One of the following plant groups is known for fibre source									
	(A)	sal, tendu, bamboo	(E	3)	jute, Hemp, Agave	е				
	(C)	oak, fir, balsam	(I))	avacado, mint, pir	ne				
80.	Tree	trunks of humid tropical for	ests are cloth	ed	with					
	(A)	Saprophytes (B) Paras	sites (C))	Epiphytes (D)	Hydrophytes			
81.	Larg	est leaf and flower respectiv	ely are knowi	a ir	ı					
٠	(A)	Vanda teesselata and Russ	elia	'						
	(B)	Vaccinium neigherrense an	d Rhamnus				,			
	(C)	Victoria amazonica and Rai	filesia							
	(D)	Viscum orientale and Rusco	ıs							
82.	Tran	asgenics are known to be								
	(A)	disease-prone	(E	3)	disease-resistant					
	(C)	disease-inducive	(I))	disease-promotive	;				
83.	Exot	ic plants exhibit								
	(A)	slow growth and low-nutrie	nt efficiency							
	(B)	fast growth and high-nutrie	ent efficiency							
	(C)	slow elongation and growth	L				,			
	(D)	none of the above	* .			•				
84.	Tran	nsitional zone between two a	djacent habits	ats	is referred as					
	(A)	ecotone (B) ecolo	gical niche (C)	ecesis (1	D)	euphotic zone			
85	IUC	N's collection of available da	ta of threaten	ed	species is named		· ·			
	·(A)	IUCN Bulletin	(E	3)	Red data book					
	(C)	IUCN Manual	(I))	Monograph		* :			

OU.	water-borne diseases due to contaminated water include								
	(A)	Cholera, Typhoid, Diarrhea, Hepatit	is						
	(B)	Swine flu, Viral fever		. , .	÷	•			
	(C)	Blood cancer, Brain tumour							
	(D)	Epilepsy, Arthritis				•			
87.	Summer leaflessness of trees is common in								
	(A)	coniferous forests	(B)	tropical deciduous forests					
	(C)	temperate deciduous forests	(D)	tundras					
88.	An example of co-evolution of plants and animals is								
	(A)	figs and their pollinator wasps	(B)	ixora and bats species					
	(C)	conifers and Macaques	(D)	teak and moths	3				
89.	Producers in pond ecosystem include								
	(A)	Halophytes and Oaks							
	(B)	Mesophytes and macro fungi							
	(C)	Pines and zooplanktons							
	(D)	(D) Rooted and floating hydrophytes and phytoplankton's							
90.	Treeless vegetation characteristic of								
	(A)	Savannas (B) Taigas	(C)	Tundras	(D)	Mangroves			
91.	Ripa	arian ecosystems refers to		·					
	(A)	hill top forests	(B)	cloud forests					
	(C)	reed forests	(D)	forests fringing river systems					
92.	Cell immobilization technique is facilitated using								
	(A)	Potassium permanganate	(B)	Sodium alginat	e				
	(C)	Sodium chloride	(D)	Calcium carbid	e				

93.	Genetic diversity can be detected by								
	(A)	iso-enzyme analysis	(B)	co-enzyme ana	lysis				
	(C)	protein synthesis	(D)	photosynthetic	ability				
94.	Sources of precipitation include								
	(A)	ponds and lakes	(B)	lakes and rese	rvoirs				
	(C)	throughfall and stem flow	(D)	rainfall, dew,	snow, fog				
95.	Tree rings are distinct in								
	(A) tropical species due to indistinct seasonality								
	(B)	(B) temperate species due to distinct seasonality							
	(C)	subtropics due to moisture			•				
	(D)	subtropics due to high illumination							
96.	Palms characteristically possess								
	(A) thick fibrous roots, caudex and spadix,								
	(B)	thin tap roots, caudicle and spikes							
	(C)	drupes, firs and cymes							
	(D)	berries, spruce and thyrses							
97.	Tick the odd item								
	(A)	Photosynthesis (B) CO ₂ in take	(C)	Chlorophyll	(D) Respiration				
98.	Desertification refers to								
•	(A)	forest degrading to dense taiga							
	(B)	forest improving to tundras							
	(C)	forest improving to deserts							
	(D)	forest degrading to sparse vegetation		•					
99.	Seed dormancy is common in								
	(A)	water-stressed ecosystems	(B)	nutrient-stres	sed ecosystems				
	(C)	mangrove ecosystem	(D)	all ecosystems					
100.	What does the parameter 'r' stand for in a logistic equation?								
	(A)	Reproductive output	(B)	Rate of increase					
	(C)	Ratio	(D)	Relative frequ	ency				